Executive Function in Children of Diabetic Pregnancies

Sara E. Langworthy¹, Ruskin H. Hunt¹, Michael K. Georgieff³, Charles A. Nelson², Kathleen M. Thomas¹

¹Institute of Child Development, University of Minnesota, Minneapolis MN ²Harvard Medical School, Boston MA

Introduction

Previous research from our group suggests that maternal diabetes during pregnancy may impact infant memory functions (Nelson et al., 2000), potentially due to the effects of prenatal iron deficiency on development of the hippocampus and prefrontal brain regions (Rao & Georgieff, 2007). Similar cognitive impacts have been reported for children born high birth weight, or large for gestational age (LGA), a correlate of diabetic pregnancy and fetal iron deficiency (Sorensen et al., 1998). Finally, studies of chronic iron deficiency in infancy suggest that cognitive functions are impaired years after the iron deficiency is resolved (Lozoff et al., 2006). The current study examined executive function in a longitudinal sample of children aged 12 years after the iron deficiency is resolved (Lozoff et al., 2006). The deficiency in infancy suggests that cognitive functions are impaired years after the iron deficiency is resolved (Lozoff et al., 2006). The current study examined executive function in a longitudinal sample of children of diabetic pregnancies. We hypothesized that prenatal iron deficiency would be associated with impaired executive function in later childhood.

Methods

Participants

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Gender</th>
<th>Mean Age</th>
<th>Low Ferritin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>17</td>
<td>M:10; F:7</td>
<td>9.60</td>
<td>3 Low</td>
</tr>
<tr>
<td>CDP</td>
<td>27</td>
<td>M:10; F:17</td>
<td>9.50</td>
<td>6 Low</td>
</tr>
<tr>
<td>Total</td>
<td>64</td>
<td>M:38; F:27</td>
<td>9.56</td>
<td>13 Low</td>
</tr>
</tbody>
</table>

Ferritin

- 39 ferritin scores
- 13 Low (<76µL)
- 26 Normal (>76µL)

Tasks

Stockings of Cambridge

- Children required to move colored balls to match pre-specified pattern
- Participants told to plan moves to solve problems in as few moves as possible
- Problem difficulty and number of moves varied by increasing number of Go trials prior to NoGo trial

Go/NoGo

- Children instructed to press button whenever yellow Pikachu character, but not when green Arbok character was on the screen
- Inhibitory control load varied by increasing number of Go trials prior to NoGo trial

Birth Weight Results

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Gender</th>
<th>Mean Age</th>
<th>Low Ferritin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>17</td>
<td>M:10; F:7</td>
<td>9.60</td>
<td>3 Low</td>
</tr>
<tr>
<td>CDP</td>
<td>27</td>
<td>M:10; F:17</td>
<td>9.50</td>
<td>6 Low</td>
</tr>
<tr>
<td>Total</td>
<td>64</td>
<td>M:38; F:27</td>
<td>9.56</td>
<td>13 Low</td>
</tr>
</tbody>
</table>

Newborn Ferritin and Planning Accuracy

- Within CDP group, Newborn Ferritin is significantly correlated with four move problem accuracy (r = -.57, p = 0.05)

Four Move Problem Accuracy

- CDP trend toward lower overall planning proficiency (t=1.93, p = 0.06)
- CDP show fewer problems solved in the minimum number of moves (CDP = 7.33 problems, Controls = 8.16 problems)

Stockings of Cambridge

Problems Solved in Minimum Moves

- CDP trend toward lower overall planning proficiency (t=1.93, p = 0.06)
- CDP show fewer problems solved in the minimum number of moves (CDP = 7.33 problems, Controls = 8.16 problems)

Four Move Problem Accuracy

- CDP trend toward lower overall planning proficiency (t=1.93, p = 0.06)
- CDP show fewer problems solved in the minimum number of moves (CDP = 7.33 problems, Controls = 8.16 problems)

Conclusions

Current findings indicate that children of diabetic pregnancy show poorer planning proficiency than typically developing children. Children with evidence of perinatal iron deficiency (low ferritin) required more moves to solve more difficult problems. These findings indicate that low ferritin at birth, though previously linked to memory deficits in younger children, may also impact planning processes later in childhood. However, the CDP group did not show poorer inhibitory control, indicating that lower level cognitive processes may be less affected by this early risk factor. Additionally, being large for gestational age was also related to poorer performance on inhibitory control tasks. It is possible that early risk factors such as low ferritin or high birth weight impact the development of brain structures such as the prefrontal cortex, that are thought to support with executive functions such as planning.

Acknowledgements:

This work was supported by a grant from the NIH to Charles A. Nelson (R01 NS34458). Special thanks to the Center for Neurobehavioral Development (CNBD), Neely Miller and members of the CDN Lab.