Introducing an Instructional Model for “Flipped Classrooms”

Part (II): How Do Group Discussions Foster Meaningful Learning?

Jia-Ling Lin and Tamara Moore*, STEM Education Center
Paul Imbertson, Electrical & Computer Engineering Department

University of Minnesota & Purdue University*

June 17, 2014
Purpose and Research Questions

This study is to develop an innovative instructional strategy for widespread dissemination of core courses in Electric Energy Systems Curriculum as a Model in STEM (science-technology-engineering-mathematics) education. Specifically, it is guided by the following questions:

An Overarching Research Question:
What impact, if any, does the new instructional model have on student learning?

- **Study I:** In what ways does the instructional model empower instructors?
 - Ways of role change for the instructor change in a non-traditional lecture hall
- **Study II:** In what ways do pedagogies enhance learning?
 - Joint efforts of a learning community co-constructing knowledge
 - Establishing classroom discourse for communicative teaching and learning
Research Questions

• How does collaborative group work, e.g. group discussions promote learning? How do we measure learning gains?

• What are the necessary instructional interventions during group problem solving?
The Four-Practice Model[1] and Active Learning[2]

I. Anticipating
- Problematizing content
- Analyze students’ learning demands

II. Monitoring
- Giving students authority
- probe students’ responses; engage in conversations with students; keep group discussions on track

III. Connecting & Contrasting
- Holding students accountable to others and norms
- Elicit questions and promote dialogic inquiries
- Connect and contrast students’ views to the discipline norms.

IV. Contextualized Lecturing
- Providing relevant resources
- Present lecture based on students’ responses
Design-Based Research Methods[3]

- An interdisciplinary approach that acknowledges the fundamentally applied nature of educational research.
- Researchers working in partnership with educators seek to refine theories of learning by designing, studying, and refining rich theory-based innovations in realistic educational environments.

http://www.designbasedresearch.org/dbr.html

• Situated in a Real Educational Context
• Mixed methods
 – Quantitative: Surveys, group discussion discourse
 – Qualitative: Classroom observations, weekly meetings with the course instructor
• Multiple Iterations in design and testing
 – Evolve from prototype problem-based learning to a Four-Practice model for instructional interventions in problem-centered learning.
• Advanced the Three Goals of Design, Research and Practice simultaneously
Setting, Data Collection, and Analysis

Setting:
- In the course of EE4701: Electric Drives
- 250 students (3 groups from spring 2012-2014)

Collection
- Students’ verbal discourse while working on problems posted by the instructor within a small group
 - Observed by the researcher
 - Audio recorded
- Online surveys at the beginning and the end of the semester
- Two focus group meetings
- Artifacts of exam papers and group problem solving worksheets

Analysis
- Coding schemes: the revised Taxonomy of Educational Objectives\(^4\)
- Event history approach
Rationale: why flipping classroom?

Assumptions:
Students are able to learn certain types knowledge and skills without support while requiring instructional interventions for other learning tasks.

1. Learning gap and learning potential
2. Domain knowledge presentation for hybrid instruction
 - Online video modules
 - Problematizing content to reframe domain knowledge
3. Contextual limitations
 - Communication discourse
 - Authoritative vs. dialogic
 - Problem-solving group dynamics
 - Efficacy beliefs, learning perspectives and habits

Zone of proximal development (Learner can do with guidance)

Learner cannot do unaided

Vygotsky: Zone of Proximal Development
Coding Scheme: (I) Knowledge Dimension

<table>
<thead>
<tr>
<th>Knowledge Type</th>
<th>Definition</th>
<th>Verbal data examples from the current study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factual (F)</td>
<td>The basic elements that students must know; to be acquainted with a discipline or solve problems in it.</td>
<td>“Isn’t P mechanical tau times omega?”</td>
</tr>
<tr>
<td>Terminology, Specific details and elements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conceptual (C)</td>
<td>The interrelationships among the basic elements within a larger structure that enables them to function together.</td>
<td>“So, what if we assume the total power we get is some torque times speed. So that torque is going to be applied by the motor no matter what.”</td>
</tr>
<tr>
<td>Classifications and categories; Principles and generalization; Theories and models</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Procedural (P)** | How to do something; methods of inquiry, and criteria for using skills, algorithms, techniques, and methods | “We know that 6000 minus tau minus 990 equals P loss, right?”
“We’re trying to find mechanical power, we have to use mechanical speed.” |
| **Subject-specific skills and algorithms, techniques and methods; Criteria for determining when to use appropriate procedures** | | |
| **Metacognitive (M)** | Knowledge of cognition in general as well as awareness and knowledge of one’s own cognition. | “I first did it using P and then added it to the answer and had it wrong.”
“Oh! That’s where I got mixed up. It’s not omega synchronous. If you just say omega…” |
| **Strategic, Cognitive tasks including appropriate contextual and conditional knowledge; Self-knowledge** | | |
Coding Scheme: (II) Utterance Structure/Cognitive Dimension

<table>
<thead>
<tr>
<th>Utterance structure</th>
<th>Definition</th>
<th>Cognitive process relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiating (IN)</td>
<td>Introducing new topics</td>
<td></td>
</tr>
<tr>
<td>Asking questions (AK)</td>
<td>Showing uncertainty about something; Seeking information and classification to increase knowledge and understanding</td>
<td>Remember, Understand</td>
</tr>
<tr>
<td>Explaining (EA)</td>
<td>Providing interpretations and reasoning</td>
<td>Understand</td>
</tr>
<tr>
<td>Exploring (EO)</td>
<td>Investigating and looking into possibilities and new ideas</td>
<td>Analyze, Evaluate, Create</td>
</tr>
<tr>
<td>Critiquing / Challenging (CR)</td>
<td>Critically reflecting on interpretations/ reasoning in which proposals may be challenged and counter-challenged.</td>
<td>Evaluate</td>
</tr>
<tr>
<td>Conscious referencing (RF)</td>
<td>Purposeful citations of established and credible information for applications and analyses</td>
<td>Apply, Analyze</td>
</tr>
<tr>
<td>Cumulative (CU)</td>
<td>Speakers build constructively and uncritically on each other’s contributions</td>
<td>Remember, Apply, Create</td>
</tr>
<tr>
<td>Key inquiry (KI)</td>
<td>Seeking key and critical information for deep understanding of content-specific knowledge and skills</td>
<td>Understand, Analyze, Evaluate, Create</td>
</tr>
</tbody>
</table>
Results (I)

(1) Utterance counts in group discussions along the knowledge type dimension
 • Worked with three different problems
 • Discussion focused more on conceptual and procedural

<table>
<thead>
<tr>
<th>Knowledge Type</th>
<th>Conceptual</th>
<th>Procedural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group O</td>
<td>69%</td>
<td>19%</td>
</tr>
<tr>
<td>Group T</td>
<td>58%</td>
<td>20%</td>
</tr>
<tr>
<td>3-Group Ave</td>
<td>33%</td>
<td>38%</td>
</tr>
</tbody>
</table>
Results (II)

(2) Dialogue counts categorized by both the knowledge type and the utterance structure.

<table>
<thead>
<tr>
<th>Utterances structure</th>
<th>CU</th>
<th>AK</th>
<th>EA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group O</td>
<td>40%</td>
<td>18.5%</td>
<td>25%</td>
</tr>
<tr>
<td>Group T</td>
<td>33%</td>
<td>22.5%</td>
<td>11%</td>
</tr>
<tr>
<td>3-Group Ave</td>
<td>34.6%</td>
<td>25%</td>
<td>24%</td>
</tr>
</tbody>
</table>

CU: Cumulative
AK: Asking questions
EA: Explaining
Results (III)

3. Discourse progressions during one class period.
 • Trend: Started with more talks on factual and ended with conceptual and procedural
Students’ comments on improved learning

• One (thing that) I learned better, --- that I was trying to relate equations to the physical engineering problems we were talking about. I am trying to work, --- trying to understand. I looked at equations trying to think why is this way and how it is related back to the machine. I think that I was starting thinking that way a lot---

• It is kind of similar to what XXXX said. --- I try to understand where the equation comes from and, ---I was always just to find an equation and plugged numbers in. Now, I try to see what's going on and figure out what equation and plus why. --- Biggest thing is overall problem solving.

• Not just getting an equation--- that always works. But, finding general physics behind it. --- I won't go so as far as I knew exactly where they came from as high level of skills of integrals and calculus to make it. But, I can see from the approximation. I can see how to apply it. Using these diagrams to see how to use it.

• It just emphasized lab and problem solving --- draw a picture ---. They told us so much back in physics, but just bad habits for so many years---. It's a good reminder.

• --- Starting (with) a picture, instead of --- not equations and numbers.

• --- Drawing a picture and thinking of a physical picture, before writing down the equations and getting numbers.
Timely help

Like you got a piece of puzzle then the rest got to solve the puzzle. Like, you worked until you were exhausted and then asked for help. Not like someone just told you. --- The problem is difficult enough, and you need a hint for directions.

I do remember times when we got stuck and got hints from (the instructor). I always thought learning happened just beyond your ability. Oh, it's too easy, --- or it's too hard then you don't know what to do.

Taught by example

The instructor was the example that how (he) used a lot ways--- he tried--- to teach the class. I learned by example. How he talked about problems, ---how he posted problems. Picked up a little bit of that way that how he posted the problem.

Contextualized Lecturing

Great, I really enjoyed it. I feel like this class added a lot of the unique value and experiences. Anyone can find a ton of great lectures and learning material online for free or low cost. I enjoyed having more interactive experiences like this one.

---Yeah (I want summary lectures), would rather have lectures after problem solving. --- Yes, you got those aha moments.
Findings

- Collaborative dialogue enables cognitive development and deep learning
 - Noticeable shift of discourse focus, from factual to conceptual and procedural
 - Learning habits Change-accepting or rejecting peers’ opinions with explanations

Manifestations of learning gains

- Group dynamics influences discourse
 - Asking more questions when developing trusts
 - Recognizing how group works are beneficial for learning

- A learning community including both the instructor and students promotes active learning
 - Students take the ownership over their own learning
 - Instructors play a critical role to help students become experts
 - Interactions between the instructor and students shape group discussions
Summary

• Pedagogies of problematizing content combined with communicative teaching and dialogic group discussions applied in the instructional model have shown effective ways to flip lectures in engineering education;

• The collaborative nature of dialogic discourse during group discussions, promoted by the model, enables knowledge co-constructing and mutual responsive learning;
 – It refines roles of the instructor highlighting both the authoritative and responsive natures in “flipped classrooms”;
 – It makes students’ understanding of knowledge and learning of knowledge audible and noticeable.
 – It requires joint efforts of a learning community including both students and the instructor.

• Challenges remain:
 – Balance activities of group discussion and contextualized lecturing
 – Balance individual need and class learning
 – Support dialogic inquiries
 – Improve epistemological beliefs of knowledge and learning
Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 0942168 through the Division of Undergraduate Education program Course, Curriculum, and Laboratory Improvement. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. This collaborative project includes the authors of this paper as well as the University of Minnesota Principal Investigator, Dr. Ned Mohan, and the University of Northern Arizona Principal Investigator, Dr. Allison Kipple. One of the authors (Lin) thanks Dr. Cynthia Lewis for discussions of discourse analyses.

References:
References

